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Some Applications of Extended Interval Arithmetic
to Interval Iterations

S. M. Markov, Sofia

Abstract

The calculation of united extensions of real functions of one variable by means of primitive interval
operations is considered. 1t is demonstrated that extended interval arithmetic is a convenient tool for
treating this problem. Some direct applications of the results obtained to interval iteration procedures
are given.

1. Introduction

Familiar interval mathematics makes use of only two primitive arithmetic
operations between intervals: addition 4 + B and multiplication AB of the
intervals 4 and B. The operations for the familiar subtraction and division are
compositions of these two operations. Indeed, the subtraction of 4 = [a,.«,].
B =1[h,.bh>] can be written as 4 + [ — |, — 1]B, and division is [¢, ¢]4B, where
¢ = 1/(hh>).

Therefore we should not consider the last two operations as primitive ones. We shall
call them auxiliary subtraction and auxiliary division, respectively, in order to avoid
confusion with other operations that are introduced later.

As it is based upon only two primitive operations, familiar interval arithmetic
presents a very simple algebraic structure. It is often realized that this algebraic
structure is not rich enough to handle various problems arising in interval
mathematics. This structure can be substantially enriched if the set of primitive
operations is extended by two new operations. This extended interval arithmetic
presents an interesting algebraical structure that is especially suitable for handling
problems involving interval functions.

In this paper we give a short introduction to extended interval arithmetic and some
rules for calculating united extensions of real functions of one variable. We then
apply these results to some interval iteration procedures of Newton type.

2. Extended Interval Arithmetic

We shall denote the set of reals by # and the set of all closed intervals on £ by .4 (#).
Let ¢, and a,, a; < a», be the end-points of 4 € #(A), and write A = [a,,d,]. By a,
and a, we mean the end-points of 4 such that |a.| < |ay|; that s, a. is the end-point of
A thatis closer to zero than a,. An interval with end-points o« and f§ (o not necessarily
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< f5) will be denoted by a v f or [« v ff]. For the width of 4 we write
w(A) = a, — a,. The absolute value of A is [A| = max{|a,|. |a,|}. The set of all
intervals A4, such that 0e 4, will be denoted by #*(#).

Addition of A4, Be.#(#) is defined by

(A) A+ B=1la; + by,a, + b;].

A convenient formula for multiplication of two intervals A, Be #*(A) is
(M) AB = (a.b.) v (asby).

Auxiliary subtraction 4 + (— B) will be indicated by 4 © B, and this may be
written as

(AS) AO B=1la, — by,a, — b],

for A, Be.4(A).

Auxiliary division of 4 and B for 4, Be.#*(#) can be written as
(AD) A O B=1(a./by) v (a,/b.).

The operations (A). (M), (AS). and (AD) are well known from familiar interval
arithmetic [1. 5, 6. etc.], since we have

A+ B={u+b:acA beB). ASB=1{a—b:uacAd beB],
for A, Be.9(#) and
AB = {ab: ac A,he B}, AQOB=1{a/b: ac A,be Bj,
for A, Be .9*(A).

We extend [3] the interval arithmetic by the following two operations: Basic
subtraction, given for 4, Be .#(A#) by

(S) A—B={(ay — by v (a; — by),
and basic division, defined for 4, Be .#*(A) by
(D) A/B = (a./b) v (ay/b,).

We shall further consider the operations (A), (M), (S), and (D) as primitive
operations. The auxiliary operations (AS) and (AD) are compositions of the
primitive operations, since A © B= A4 + (— B) and 4 © B = A(1/B). Analogous-
ly, we may consider an auxiliary addition 4 @ B = 4 — (— B) and an auxiliary
multiplication 4 ® B = A/(1/B).

These operations can be expressed in terms of end-points of the intervals as follows:
(AA) A®B=1(a, + b)) v (u, + by) for A,Be.9(A),

(AM) A® B = (aby) v (a,b) for A,Be.#*(A).

Let us give expressions for AB, A/B, A® B, and 4 © B for intervals containing
zero. In the usual interval arithmetic the operations 4B and 4 © B are defined by
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AB = {ab: ae A,be B} for arbitrary A, Band 4 O B = {a/b,ac A,be B} for 0e B
and arbitrary 4. By means of the end-points these definitions can be written:

AB = b,A = (a.by) v (ab 3
AOB = (:/b‘.)A(: (d;,/bc() i :Ld/bc)} forOe A,0¢ B,
and

AB = [min{a,b,,a,b,},max{a,b,,arb,}]  for 0eA,0€B.
Thus we may define 4 ® B and A/B for intervals containing zero by
A® B=>bA=(ab.) v (ab, -
/Cj‘B - (i /hd)A( ; ;Lc/hj) 4\/ iad/bd)} for 0e4,0eB
and
A ® B = [max{a;b,,ab,},min{a,b;,ab,}] for 0e 4.0e B.

Then we have 4 ® B= A/(1/B) and A ©® B = A(1/B) for all Ae.#(#) and Be
TE(HR).

Table | summarizes the definitions of the basic and primitive operations used in
extended interval arithmetic.

Tuble 1
Basic Operations Auxiliary Operations

A Be ¥9(#) A+ B=(u, +b)via+b) A®B=(a, +by))via;+b)=A4A—-(—B)

A—B=(a, —b)via-by) AOB=(ay—by)via,—~b)=A+(-B)
A, Be $%A) AB=(ab.) v (aby) A® B={(aby) v (ab) = A/{1/B)

A/B = (a./b.) v (ay/by) AQO B = (a./by) v (ay/b.) = A(l, B)
Oec A AB = b, A AR B=bhA=A/1;B)
0eB AB = (liby)A AQOB=(1/h)4 = A(1/B)
Oc A AB = [min{a,b,, ash,}, A® B = [max{ab,,arb,}.
0eB maxi{a, by, a>h,}] min{a;b,.d2hs} |

3. Interval Operators and Fixed Points

Let ¥ be a normed lattice and .#(.¥) be the corresponding normed interval space
over ¥, see [4]. Denote by || || the norm in .# (%) and consider an interval operator
U: 9(YYy— 9(&). The operator U is a contraction mapping in .#(.¢) if there is a
constant ¢, 0 < ¢ < 1, such that the inequality

IU(X) = U < gl X = Y
holds for every X, Ye #(¥).

Assume further that ¢ is a Banach lattice and hence is complete. Then we have the
following fixed-point theorem (as usual a fixed point of Uis an X* €.#(.¢) such that
X* = U(X%)):
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Theorem 1. Let ¥ be a Banach lattice and U be a contraction mapping in 9 (). Then
the operator U possesses a unique fixed point X* € #(&). that is the limit of the
sequence of successive approximations

YU UYM). n=0.1.2.
with X'We #(¢) arbitrary.

Proof. The operation ** — " in .7 (%) enables us to prove Theorem 1 in exactly the
same way as in the classical case. Indeed, using the equality X" ™" = {(X") and the
properties of the interval norm ||-|], we have for m > n > 0:

X X = Uy U0 < gl x|
= gIU D) — U ) < gl X P — X
< g — X
On the other side, we have
YO = X< X — X (X = X e [y
SU+qg+qg>+ - +4¢" " HXY - XY
< (1= K) X - X

Thus
HX'm) o X(m)H § (]"(1 o (/) "IHX(()) o XH)H-

and therefore X™ is an interval Cauchy sequence, that is lim,., ...,
[[X" — X"™|| = 0. From the completeness of ¢ it follows then that there exists an
X*, such that

lim, ., [ X — X*| = 0.

This  result and  |[UX™) — UX*H)| < gl|X" — X¥|  imply  lim,., [[U(X"™)
— U(X*)|| = 0 as well. Further, from

X% = U] < [|X* = X+ X = U]
= [[X* = X" + U™ D) = UX*)|| -0
we see that ||[X* — U(X*)|| = 0 and hence X* = U(X*). This completes the proof.

We next formulate the fixed-point theorem for the case when U is a contraction
mapping only in a neighbourhood of the fixed point.

Theorem 2. Let ¥ be a Banach lattice and U be a contraction mapping in a
neighbourhood A" < $(¥) of its fixed point X*. Then the iteration process
XD = (X", n=0,1,.... converges to X* as O(q") for any X'Ve. 1.

Proof. The assumptions on U mean that there exist two positive numbers p and
¢ <1, such that [JUX)— U(Y)|| <y¢l|X — V]| for every two points X, Ye
A(X*Ep) =172 — X*|| < p, Ze I(L)).

Assume that X" e. 4 (X* p) for some m = 1,2,.... Then
LY X = U™ = X< gl — X < gp < p
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shows that X' e (X*, p) as well. Since X'"'e. 1 '(X*. p). we obtain that X" e
(X*, p) tor all i = 1.2..... Using the fact that U is a contraction mapping in
S(X*, p) we can write

Hlx,rln) _ ‘X'*H _ “l,’v(/\/(” - 1)) _ l(."*)” < ([H;Y("' o ‘X’*M < -
< @UIX X<

and this proves the theorem.

As usual we say that when || X" — X*|| = O(¢"). the convergence is linear or of order
I. More generaily, the convergence is called of order p > 1 if X" — X*|| = O(y4"").
Thus in the above we have linear convergence: later we shall consider interval
iteration procedures with convergence of order 2.

4. United Extensions of Real Functions and Their Computation by Means of Interval
Arithmetic Operations

Let /o be a real function defined on the interval 2 and 7(D) be the set of all
subintervals of 7). A mapping F*: 7 (D) — #(#)1s called an interval extension of /.
il the restriction of F* to D is equal to f. F¥|D =/ A special case of interval
extension is the united extension, defined by

FX) = v (V) ve X for Xe. (D). (1)
Here o fiviove X means the interval of mimimal width. containing all fiv) tor
Ve
We shall denote the united oxtension of the functions fig.... by F. G, .. ..

respectively,

I 7 s conunuous. then (1) can be written

IOy = 1/ (vyve X0 o=Iming ¢ f(xmax .y fiv
i v (Y H

We shall now consider the following problem: How do we calculate the umited
extensions ol the functions £+ ¢, 1 - g, fy.and f g il the united extensions of the
functoions £ and g are known? We shall answer this question 1n case that f and ¢
satisty certan monotonicity conditions,

Denote by 76Dy the set of atl real functons that are monotone o the intersal 70
Note that the united extension of & 40D s casily computad by

X e DA s fn RSN S E P AR IR (2

We shadl sav that foge #Z00y satsty the monetometty conditionn #1 1f both
functions are monotone increasing or both are monotone decreasing in . The paw
DSy satshies #2 1 one of the functions 1s monotone increasing and the other is
Menotong decreasing on 4

Proposition 1. 1/ g and 7 = 7 = ge /(D) then jor every ¥ o 1
RO+ GOXL (g sauisty 771,

X o o . . Ry
ROy GOX b g sausty 2

s}

Computing Sappi
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Proposition 2. If f.¢g. and i = f — ¢ are monotone on D, then for every X < D
{F( XY — G(X), if (f.g) satisfy . #1.

4
F(X)© GX). if (f.g) satisty - #2. )

Proposition 3. Let fand ¢ are such that | f]. |y|, and i = /- g are monotone. Then for
every X o D,
F(X) - GO if (7). satisty . #1.
H(X)e{ ‘( ) - G(X) ”(|./- lgl) s Isty )
FX)® G(X), if (| /1. |g|) satisty . #2.
Proposition 4. Let  and gy are such that [f].|gle. #(D), g(x) # 0 for xe D, and
h = fye #(D). Then for every X < D,
[ FX) G ) g)) satisfy . #/1.

H(X) =
H) X)) O G (| f]. 1)) satisfy .72,

(6)
The verification of these four propositions ts straightforward. As an example we
prove the last one.

Verification of Proposition 4. Using (2) for fige. /(D) we can write H(X) =
[/ gl ) v (f(xa)/glx:)]. Now if [f] and Jg| satisfy -4 1., then ¢/ (x))] —
L/C)DUg(e )] = g(va)]) = 0. In this case we see easily that

HOX) = [(fxhig(x) v (f(x2)/g(x:)]
= [ /() v )] Lg(x) vogya)] = FOO S GeY).

In case |f] and |¢g| satisfy . #2. we have that

(/)] = LA DDUy(x )] — [g(xa))) < 0

implics

HX) = [(f(x)iglx ) v (Jxa)gxo))]

= [f(x) v [(x)] O Lyg(x) v glxy)] = FU) O GOX).

Let us now give some practical applications of Propositions 1 —4.
Example 1. Find the united extension of the function /i(x) = x? + x. for xe.#.
Solution. The united extension of x is X. By means of Proposition 3 we see that the
united extension of g(x) = xv* = x - x can be calculated for intervals X 30 (since for
such intervals the pair (x|, |x|) satisfies . #1) and is equal to X - X = X2, Applying
Proposition | we see that the interval extension of x 4 x? can be calculated for every
interval X that does not contain the points — 0.5 and zero in its interior since on
such X the functions x, x? and x + x? are monotone. It is given by
X+ X0 X=0:

HX)={x+ x*:1xeX) = J ,
o ‘ {X@X:ﬁ){g—o.5<>rx'g[4).5,o1.

Example 2. For the united extension of the function A(x) = x — x*, we tind upon
applying Proposition 2, that
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X - X2 il X<[0,+05]0or X=0.5;

HXY =4 0
XOoX-.if X<0.

Example 3. Find the united extension of the rational function A(y) =
(2 4 )1+ ).

Solution. The functions |2 + x| and |1 + x|satisfy . #1 in the intervals (— », — 2)
and [~ 1, v )and satisfy . #2in[— 2, — I]. We also have he . #/((— », — 1]) and
he #(] — 1. x)). Therefore, in accord with Proposition 4 we may write

{(2+X)(1+X). if X< —-2orX>—1:

H(X) = . " ;
C+Xod+X.0 -1 <X< —2.

where we have also used the fact that the united extensions of the functions 2 + v
and 1 + vare 2 4+ X and 1 + X, respectively. (This example is taken from [2],
where it 1s regretfully noted that the united extension of (2 + x)/(1 + x) cannot be
calculated by means of the familiar primitive interval arithmetic operations for X" <
[1.2].

These examples show that it is possible to outline an algorithm for calculating the
united extensions of an arbitrary rational function of one variable in certain
intervals.
5. United Extensions of Some Newton-Type Operators
We shall say that fsatisfies the N-condition on D = [d,.d,] if:
1y there is an v*, d; < x* < d,, such that f(x*) = 0;
2) /1s twice continuously differentiable in D:
3) /" and /7" have constant sign in D

4y /7 1s monotone increasing in D
Sy /7 is not very close to zeroin D, ie. |/ =2 2> 0in D.

Denote by D' the subinterval of D on which f(x)f”(x) = 0: D" is either the interval
[di.x*] or the interval [x*. d,]. Similarly let D” be the other subinterval of D on
which f(x)f7(x) = 0.

Define the Newton operators
() = n(fix) = x — [0/ f ()
AN = A(f1x) = x — f(x)/ ().
where d is such that f(d) = max,.p|f(x)]. Obviously de {d,.d,).

We shall first calculate the united extension of #A(x). To this end note that the
functions x. g(x) :_/'(x)/‘/"(ﬁ) and 7i(x) = x — g(x) are monotone increasing on )
(indeed. A'(x) = | — f(x)/f(d) = 0 in D). Then by means of Proposition 2 we
obtain for the united extension of 7(x):

NX) = X — FO0/£(d).

We notice that d is an end-point of D (the one that is also end-point of D'). If we
recall the definition of the operation 4/B for the case 430 (see Table 1) we see that
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N(X) can be written as

~J

NX) =X — FX)F(D). (
where F' is the united extension of /7.

We shall now calculate the united extension of #(x). In order to write down the
united extension G of g(x) = f(x)/ /'(x) we note that | /1 and | /7] satisty .41 on D)’
and #2on D", Since /7 1s monotone increasing in [ we can apply Proposition 4
to obtain
L LX) FIOY) for X < D',
GlX) =9 . S
[HX)Y O F(X) for XY D
where Fand F' are the united extensions of fand f'. respectively.
Now in order to calculate the united extension of n(x) = x - ¢g(v) we first observe

that v and g(xy) are both monotone increasing in D and that #(x) is monotone in D

and /Y (since #'(x) = f{x)/7(x) £7(x)). Therefore by Proposition 2 we obtain

NX) = X — GUX). for X = DD, that 1s

LY — FUN) F'(X). for X such that FIXF7(X) = 0.

1 X - FLXO) O F(X), for X such that FINF7(X) < 0.

where I, Fand F7 are the united extensions of 7, /" and /. respectively.

According 1o (8 it Y is an interval. such that /(x)/7(x) = 0 for all ve X, then
NX) = (v - flu) tivrve X = X - FOX)FI(Y.

where f satisties the A-conditions on 1) < Y (see Fig. 1).

Assume that the equation f{v) =0 18 solved by the iteration procedure

VTR e TSy S wath Y such that £ £ > 0. Suppose we
know bounds for ¥, that is, suppose we know (smaif) interval X' containing "
Then we can assert that vPVe YV = Y7 - A FOYy and by induction

vh oty ooy ke Ry Thus by means of extended interval anthmetic
we can caleudate an interval for v* ' provided we know an interval for .
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6. Some Interval Iteration Procedures of Newton Type

As in the previous section we shall assume that f'satisfies the N-conditions on D. We
shall demonstrate convergency of the interval iteration procedures X" * ! = N(X"™")
and X" U = N(X")where N and N are the Newton-type interval operators defined
in Sect. 5.

Theorem 3. Let f satisfy the N-conditions on D and F be the united extension of f.
Then the iteration scheme
X" =D

XD = X0 — B F XN, i=0,1,2.... (9)
produces an interval sequence | X' converging 1o x*, that is lim; . , |X'" — x*| = 0.
Proof. As we showed N(X)= X — F(X)/F(D) is the united extension of
A(y) = v — f(x), /'(d). We shall demonstrate that N(X) satisfies |[N(X) — N(Y)]
< ¢jX — Y| with ¢ <1 for every X, Y < D. Indeed, since N(X) is the united

extension of #i(.x) and 7 is monotone increasing in D, we can write N(X) = [7(x)).
a(v,) ). Further, using that [i(u) — a(v)] < glu — v}, g < 1 tor u,ve D, we have

INCXY — N(Y)| = (LG ), i) ] — L), i)
=[Gy ) — Ar)) v (i) — 0]

max{[Aa(xy) — AQ)). a(x:) — A

N

max {ylx; = yil,glxy — vaf) = ¢lX = Y.
Thus N(X) satisfies the conditions of Theorem 2 with fix-point X* = x*. Therefore

(9) produces a sequence X'™* — v*,

Remark 1. Theorem 3 holds true for arbitrary chosen X' = D (not necessarily
X3 ¥y,

Remark 2. Theorem 3 follows directly from the theorem in [2].
We shall next consider the interval iteration procedure using the operator N(X).

Theorem 4. The iteration scheme

choose X' < D

let X0+ = X0 — F(XYD)/F(X) (10)
produces an interval sequence (X} that converges to x* and for the rate of
convergence we have

X — x* = 0(g™), 0<g<l.
Proof. We shall first consider the case x* € X', This case is the most interesting for
) 2

the practice, since then by means of (10) we can obtain a sufficiently narrow interval
that contains the zero x* of f(x) = 0.
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There are four subcases according to the signs of /" and f":

a) /"> 0and /" < 0 (Fig. 2a);
b) /" <0 and f” > 0 (Fig. 2b);
¢)f'>0and /" > 0 (Fig. 2¢);
d) /" <0 and /" < 0 (Fig. 2d).

Fig. 2a—d
All subcases are treated similarly ; we shall consider in detail the first subcase. /” > 0
and /" < 0 imply (see Fig. 2a):

FOX™N) = [f(9), £(9)],

F/(XU\-») _ [./V(~\-(3k))~A/l,(-\‘(:")] > 0.

Since F(X'™) contains zero and F/(X®) >0, we have FX™)/F(X*®) =
FOX™) f(x'P). The function x — f(x) /"(x'"") increases in X" so that we have

.\.121") _./'(.\.lzki),/"(V\.llkl) > '\,llki _./.('\JI‘\)) -/"('\.llk)).
Therefore iteration (10) can be written end-point wise:
V\.<1k ) ~\.(1") _/.('\'(1‘())'./.'('V‘lk))
AT = ) ) (1
(see Fig. 2a).

In subcase b) for the end-point formulation of (10) we obtain again (11), whereas in
subcases ¢) and d) we obtain
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AT = ) ()
XY = = SN
Summarizing, for (10) we have
XEED = XN — FXR)F(XW) = X — FX™) (), (107
where j= 1, if ff" < 0in X? and j = 2, if /" > 0 in X",
This shows that only one computation of f* on each step is required.
We consider now the convergence of the method.
In subcase a) we can write for the width of F(X*%)):
WCHX™)) = fx) = f(x]) = (65 = ) S + 50 = X))
= WX L) + ) ), Pex™ (12)
Since /7" < 0 (12) implies that
wFX™) /() < w(X™). (13)
From (107) using w(A4 — B) = w(A) — w(B) and (13) we have
W) = (X)) — FY) ()
= (XY — w(FXR)) f7(0),
Substituting (12) in the above equality we obtain:
W) = a0(X) = Or (X)) + Dt (X () )
= (SN2 1) P XR), tre xth,

Subcases b), ¢), and d) can be treated in a similar way; the results obtained can be
summarized as follows:

WO ) = R L)) (),

where jis 1 or 2. Choosing ¢ > 0 such that — 5(/"(¢)/f"(d)) < ¢ for all ¢,de D we
may write

w( XY < g w (X, (14)
In view of x*e X™ (14) can be written also as
XD < dg| X — 2 (15)
Indeed. using the fact that x* e X' implies
I(X™M) <X — ) < ow(X™),
we have
X ) < gl (X) < AgCu(X)) < Al

Now [rom (15) and Theorem 2 the proof of Theorem 4 follows for the case x* ¢ X',
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Il x*e X' then either X'°' ¢ D’ or X'® < D”. Consider the case X'" = D', In this
case (10) can be written in terms of the end-points

. " /(v‘“) W S
v (=) )

(K}

which is the usual Newton method starting one time from x{* and another time

from x'' (Fig. 3).

—— P

X(k) X(k‘”

P

D'

From the well-known inequalities

2

NLEA! . (k) k(2 k+1 . (k) k|2
[T — ] gl — xR YYD — ] gl - ¥
it follows

max{ v — T — < gmax ([ — L — R

k) -k (k)
— xFL

= g(max|x| — x*))?
that is
\X(k* 1y .\‘*| < inﬂ) o X*‘Z‘
which proves the theorem in this case. Since the case X'°' = D" leads after the first
iteration to one of the previous cases, the proof of Theorem 4 is complete.

Following Alefeld and Herzberger [ 1. p. 97] we may modify the iteration scheme
(10) as follows:

choose X' < D, X' 3 x*, and

let X1 = Y% — YWY F(YR),

where
A m(XMY ]l £ fim(x™y < 0

YO = (XM U] ) fm(X*y = 0 (16)
X Olhervwse

and m(X) denotes the midpoint of X.
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In the next section we give a numerical comparison between the interval iteration
scheme (10) and Moore’s method [5. Sect. 7.2]:
choose X3 x*
let X5 1 = (m( XMy — Fmn(X™)), FI(X*y) n X (17)

We also give a comparison between the modified interval iteration method (16) and
the modified (after Alefeld and Herzberger) Moore’s method:

choose X3 x*,

o k)
et (o SO o,
where
[ m(X) ] if () (X)) < 0
YR = & Im(X) P i ) fm(X™) > 0 (18)

X otherwise.
The numerical calculations in the next section are performed by Ivan Nedkov.
Thereby a precompiler for extended interval arithmetic created by Nikola:
Dushkov has been used.

7. Numerical Results

For the comparison of the methods we use two examples of equations from [ 1. p.
97—99]. We shall first compare numerically the methods (10) and (17).

Example 1. For the solution of the equation
f(x) = x3(x*3 + 2siny) — 3/19 =0
with X' = 0.1, 1] we obtain the following interval approximations:
a) by means of Moore’s method (17):
X" = [0.000000000000. 0.513607416303 ]
X2 =[0.346173111779.0.513607416303 ]
X =10.376596765306. 0.405984406594]
X =[0.392303634719,0.392471163891 |
X =10.392379503865,0.392379510728]
X =10.392379507136,0.392379507136]
b) by means of the interval Newton method (10):
XY = 10.120037044750.0.680133943621]
X2 = [0.161502933620. 0.496973170075]
X =10.236010152023,0.413088339734]
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X =10.327467643386,0.393417674107
X' = [0.381767247666.0.392382294247
X = [0.392089764461.0.392379507156
X' =10.392379289318.0.392379507136]
X =10.392379507136,0.392379507136]
This shows that an accuracy of 10 '?is achieved with 6 iterations by means of (17)
and with § iterations by means of (10).

Example 2. For the solution of the equation

with X' = [1. 1.5] we obtain the following approximations:

a) by means of (17):
X = 10.100000000000,0.123157901169]
X2 = [0.101853906531.,0.110215348995]
X = [0.107180976833,0.108476244466 ]
X =10.107564709432.0.107593118087]
X =10.107576603950,0.107576609732
X' = [0.107576606608,0.107576606608 |

b) by means of (10):
X = 10.100260801352,0.135612883879]
X2 =[0.100894156840,0.123492229604 |
X = 10.102286076683,0.114352015277]
X = 10.104657759845.0.109173023027]
X = [0.106892552883,0.107682466778
X' =T10.107550142704.0.107577098984]
X7 = [0.107576574583,0.107576606619]
X = [0.107576606608, 0.107576606608 ]

showing again that Moore’s method uses less iterations for a calculation of the zero
with an error < 10 '2,

We shall next compare the methods (16) and (18) using the same equations as
above.

Example 3. For the equation
f(x) = x3(x*/3 +2sinx) — 3/19 =0
with X' = [0.1. 1] we obtain:
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a) by means of (18):
o
X
X
X
Behl

b) by means of (16):

= [0.100000000000. 0.433580540100 |
= [0.339533432220, 0.433580540100 ]
= [0.391237711372, 0.392469297358 ]
= [0.392378544687. 0.392380226495 ]
= [0.3923795071359.,0.3923795071364]

X = [0.164098277476.0.433580540100]
X =10.358156977623,0.396230123115]
X =10.391501480063, 0.392417480786
X =10.392378966757,0.392379510878]
X =10.392379507136,0.392379507136]

Example 4. For the solution of the equation

plx) = x(x? — 1) — 1

with X' = [1,1.5] we obtain the following approximations:

a4) by means of (18):

X = 10.100000000000, 0.115390928100 ]

Xll

"' =10.107452573315,0.107577227002]

X = [0.107576435513,0.107576774994 |
X = 10.107576606608, 0.107576606608 |

b) by means of (16):

XY =10.101360436753,0.115390928100]
X' = [0.105788147041,0.107603929621 ]
X =10.107541095006.0.107576639509
X = [0.107576592680, 0.107576606608 ]
X' = [0.107576606608, 0.107576606608 |
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